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Abstract

Here we present a technique that promises better quality data from Band

limited channels at lower received power in digital transmission systems.

Data transmission, in such systems often suffers from Intersymbol Interfer-

ence (ISI) and noise. Two separate techniques: channel coding and equal-

ization have caused considerable advances in the state of communication

systems and both concern themselves with removing the undesired effects

of a communication channel. Equalizers mitigate the ISI whereas coding

schemes are used to incorporate error-correction. In the past, most of the

research in these two areas has been carried out separately. However, the

individual techniques have strengths and weaknesses that are complemen-

tary in many applications; an integrated approach realizes gains in excess to

that of a simple juxtaposition. Coding schemes have been successfully used

in cascade with Linear Equalizers which in the absence of ISI provide excel-

lent performance. However, when both ISI and the noise level are relatively

high, non-linear receivers like the Decision Feedback Equalizer (DFE) per-

form better. The DFE has its drawbacks; it suffers from error propagation.

The technique presented here takes advantage of interleaving to integrate the

two approaches so that the error propagation in DFE can be reduced with the

help of error correction provided by the Decoder. The results of simulations

carried out for both, binary and non-binary, channels confirm that signifi-

cant gain can be obtained by Codesigning Equalizer and Decoder. Although,

we have looked into systems with time-invariant channels and with simple

DFE having linear filters, the technique is fairly general and can be easily be

modified for more sophisticated equalizers to obtain even larger gains.
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Chapter 1

Introduction

Here we are interested in synchronous, linearly modulated data transmission

systems with band limited Additive White Gaussian Noise (AWGN) chan-

nels. Bandlimited channels often have non-fiat frequency characteristics that

result into Inter-Symbol Interference (ISI). In systems with ISI, the trans-

mitted pulse interferes with a number of past and future pulses. For systems

with negligible ISI, coded modulation schemes [1] [2] can reduce the effect

of WGN, effectively. On the other hand, Equalization is extremely useful to

mitigate the ISI. On channels with significant amount of noise and ISI a sim-

ple cascade of coding and Equalization does not produce encouraging results.

Recently schemes [3] [4] [5] [6] [7] have been investigated in which coding and

Equalization is combined in an effective manner to improve the overall perfor-

mance. The codesigned codlng/equalization system can be described within

the general structure of Figure 1.1. In this paper we present yet another

technique which is closer in nature to the one presented by Eyuboglu [3] [4]

(which we will refer to as Eyuboglu's Codesigned Receiver), but is quite novel

in structure. Its implementation (at least in its current form) is more suitable

for block codes, has a simpler structure and is expected to out perform the

Eyuboglu's Codesigned Receiver.

Nyquist [8] presented the first important result for uncoded systems. He

determined sufficient conditions for eliminating linear ISI at sampling in-

stants (the Zero Forcing (ZF) condition), for Bandlimited channels. The

Nyquist criterion gives'the designer considerable freedom in designing Trans-

mitter and Receiving Filters. Although he derived the condition disregard-

ing the noise, the condition gives best possible scheme ( in the sense that



it minimizes probability of Error) even in the presence of AWGN under the

constraint that all processing related to compensation of the channel, is done

at the transmitter. This is precisely the solution of the problem of designing

the transmitting and receiving filters by minimizing the noise variance at the

input of the decision device while keeping the Nyquist criterion. The main

idea is to pre-distort the signal at the transmitter by an inverse channel filter

so that the signal at the output of the channel appears undistorted. Tomli-

son precoder [9] does precisely the same in a more power-effective manner.

This approach has been combined with coding in [5] [7] and most recently by

Eyuboglu and Forney [6]. It inherently assumes the complete knowledge of

the channel at the transmitter, which is only partly true if at all, for many

appfication. Another innovative approach which also falls in the class of

coded systems where channel is known to the transmitter, was introduced by

Sanjay et al [10].

We are primarily interested in the systems where transmitter does not

have the knowledge of the channel so that preprocessing can not be performed

to satisfy the ZF condition. In this direction a long time after Nyquist's con-

tribution, research was mainly carried-out on assuming a receiver structure

which consisted of a linear signal processor followed by a threshold device, re-

ferred to as a Linear Equalizer (LE). If this LE is designed so that the system

satisfies the Nyquist (ZF) criterion, noise is enhanced at frequencies where

channel characteristics have nulls. This degrades the performance consider-

ably. Furthermore, a finite-length ZF Equalizer is guaranteed to minimize

the worst case ISI (or peak distortion) only if the peak distortion is less than

100 percent prior to equalization (open eye condition). A better LE is the

one that minimizes the Mean Square Error (MSE) [11] between the equal-

izer output and the corresponding input data symbols. The MSE LE is a

compromise; it allows some ISI to pass through so as to reduce the noise
enhancement. In most cases one is interested in reducing the Probability of

Symbol Error (PSE) rather than MSE. Aaron and Tufts [12] and Yao [13] ob-

tained the LE that minimizes PSE. Finding the system parameters requires

considerable numerical effort, however.

Better receivers for systems with severe ISI can be obtained by removing

the finearity constraint upon the receiver. Abend and Frichman [14] ( also

see [15] section 6.6) presented the receiver that is optimum in the sense that

it minimizes PSE. The receiver obtained is highly non-linear, is parametric in

the sense that the probability density of the noise must be known and is quite



complex. The next best (known) receiverin the classof non-linear receivers,
is the Maximum Likelihood SequenceEstimator (MLSE); its recursiveversion
is known as Viterbi Detector/estimator (VD) [16] [17]. The VD is simpler
than theminimum PSEreceiver,but is still quite complexwhenthe sizeof the
signalalphabet M and the memory L of the channel are large ( complexity

cx Mr). Several techniques for reducing the complexity of VD have been

looked into [18]-[24]. Out of these the techniques, the one presented in [24]

is most flexible and general.

Another very simple non-linear Equalizer is the Decision Feedback Equal-

izer (DFE). It has two linear transversal filters. A Feed-Forward Filter (FFF)

and a Feed-Back Filter (FBF). The received sequence is first passed through

the FFF. The FBF uses the previously detected symbols and forms a replica

of the ISI which is then subtracted from the output of the FFF. The dif-

ference is then presented to the decision device. For many applications the

DFE attains almost the same performance as the VD. The DFE just like

its Linear cousin, the LE, can be optimized using either the ZF or the MSE

criteria. A ZF DFE Which operates with original transmitted data fed to

the FBF, is called ideal DFE. The usual coded modulation schemes [1] [2]

can be used in a simple cascade with the ideal DFE to produce excellent

performance. In the practical situations, the exact transmitted sequence is

not known to the receiver so ideal DFE is not feasible. A real DFE puts its

own decisions in the FBF. Thus, presence of an incorrect decision in the FBF

increases the probability of subsequent errors. This phenomenon is known

as error propagation.

The error propagation could be reduced in coded systems if it were pos-

sible to place a decoder in the feedback path. However, in coded systems

decoded decisions are available only after a finite delay which is undesirable

because often the decoded decisions that are needed most are the ones im-

mediately preceding the currently processed symbol. Eyuboglu's Codesigned

receiver uses interleaving to generate the necessary delay between all but one

adjacent symbols in a block. In his scheme the number of symbols available

to the FBF (these are the decoded symbols) varies between 0 and P - 1 with

time, where P is the size of a interleaved block. This is precisely the reason

that forced him to use only the decoded data in the FBF, and therefore jus-

tified the use of noise-predictive DFE [25] which has the advantage that its

FFF is independent of the number of Feed Back coefficients. Noise-predictive

DFE is an alternative to conventional DFE. The two are equivalent as long as

3



both have infinitely long FFFs and have FBFs of equal length [26]. However,

when FFFs are short the conventional DFE outperforms its noise-predictive

counterpart.

Our codesigned receiver uses a particular type of interleaving called he-

lical interleaving. The structure of the receiver is such that undecoded past

decisions can also be used in the FBF along with the decoded decisions so

that we can provide the FBF with as many decisions as desired. Therefore,

we can use, the superior, conventional DFE without hesitation. The number

of the decoded data in the FBF is still the same as that in Eyuboglu's ap-

proach, however, the availability of the undecoded data in the FBF improves

the equalization process.



Chapter 2

System Model

In this report we will consider two types of data transmission systems: one

with channel encoding and the other without. The former will be referred

to as the coded system and the letter as uncoded system. For both systems,

we assume that the source produces an independent identically distributed

random binary sequence {al} with at • {-1, 1}. We assume that the input

sequence is semi-infinite i.e. at _ 0 only for l :> 0. We will first discuss the

transmission end of the coded system model with reference to the figure 1.1.

2.1 Coded System

The encoder takes K consecutive symbols of {ak} and produces N output

symbols. We are primarily interested in block codes. We denote the output

symbol of the encoder by cij which is the jth symbol of the ith code word.

The symbols r4j are not necessarily binary, and the Space they belong to

depends upon the particular encoding scheme used. For our encoding scheme

r4j are integers such that r4j • {0,1,...,7}. The encoder also introduces

synchronization (sync) symbols which are in fact c_0. The actual ith codeword

is [c_1, c_2,..., c_(N-1)]. Note that rqj occurs at time Ni + j and that 0 < j <

(N - 1). The condition on the input time index I _ c_j _ 0 only for i >_ 0.

The details of the particular encoder used are presented in Chapter 3.



2.1.1 Interleaver

The encoded symbols are interleaved by the helical interleaver that delivers

these symbols at time k to the output (denoted by ck) according to following

rule:

k=Ni+(N-1)j ;0<j<(N-1). (2.1)

Note that for sync symbols j = O, =*. k = Nj which indicates that the sync

symbols are not delayed relative to input. For c_1, k = Ni + N - 1 which

indicates that it is delayed by (N- 1) symbol intervals. Similarly, jth symbol

in any codeword will be delayed by (N- 1)j symbol intervals. The operation

of Interleaver for case N = 4 is shown in figure 2.1

We can think of the interleaver as a device that performs a mapping I from

the input time indexes (i,j) to the output time index. It follows from above

that i E Z + _ { non-negative integers } and j E S _ (0,1,...,(N- 1)) so

that (i, j) E Z + x S. Obviously, k E Z +. Then the mapping I is

I : Z+ x S--., Z +

explicitly, I(i,j) = k = Ni + (N - 1)j. We now proceed to show that the

mapping I is injective ( for every allowed pair (i,j) there is a unique k).

Theorem 1 The mapping I as defined above is injective.

Proof

Assume it is not injective then there are (i,j),(i',j') E Z + x S

such that k = k' where k = Ni+(N-1)j and k'= Ni'+(N-1)j'.

Without loss of generality we can assume i > i'.

Ni + (N-1)j = Ni' + (N-1)j'
N(i - i') + (N- 1)(j- j') = 0

If i > i' we have to have j < j' in order for the above to hold. The

only possibility for the above to be zero is i - i' = (N - 1) × n,

where n is an integer and j _jl = -N x n. The later is impossible

due to our constraint on is. Therefore, i = i' and j = j'.

We are also interested in surjection (onto) (i.e. every time index k =

0, 1, 2,... is a result of some input time index pair (i,j)) of the mapping.

For semi-infinite sequences (sequences that start at time, k = 0) this is not



strictly true e.g. for k = 1 there is no such pair (i,j) such that i >_ 0,

0 <_ j,j' < N- 1 and k = Ni+(N- 1)j. We will now show that the

mapping is surjective for k > (N - 1)(N - 2).

Theorem 2 The mapping I is surjective for k > (Y- 1)( N-

2).
Proof

The proof follows from induction. For k = (Y- 1)(N- 2),

i = 0 and j = (N-2) work. Let the statement be true for a

k > (g - 1)(Y - 2). Then there exist (i,j) such that

if l_<j_< (N-l);

k = Ni+(N-1)j

k+l = Ni+(N-1)j+I

k+l = Ni+(N-1)j+N-(N-1)

= N(i+l)+(U-1)(j-1)

i.e. a pair(i + 1,j - 1)exists.

if j=O; k

since k

ok

then k can rewritten as

k

k+l

= Ni

> (N- 1)(N- 2)

>_ N(N- 2)

>__(N- 2)

= N(i-(N-2))+N(N-2)

= N(i-(N-2))+N(N-2)+I

= N(i-(N-2))+(N-1)(N-I)

i.e a pair ((i- 2)),(.,V- 1)) exists. &

The facts that the index mapping performed by the interleaver is injective

and surjective (¢* bijective: for k > (N- 1)(N- 2)) implies that the output

is a continuous stream of symbols without any gaps (for k > (N - 1)(N- 2))

or repetitions.

2.1.2 Modulator

The Modulator maps every symbol in the interleaved sequence {ck} to a

point in the complex plane. Its output is a sequence of complex symbols.



It can in fact correspondto assigningparametersto any two mutually or-
thogonal signals. In our casethe real axisof the complexplanecorresponds
to the amplitude of cosinewave and the imaginary axis to that of the sine
wave. This kind of mapping of signal to points in the complex plane (or the
Constellation) is used e.g. in Phase Modulation (PM), the Amplitude Mod-

ulation (AM) or the combination of the two called Quadrature Amplitude

Modulation (QAM). The AM corresponds to the situations where informa-

tion is transmitted over one carrier such as a cosine wave alone. In this

case we can map the interleaved symbols to the real line only. The kind of

Modulation scheme chosen effects the choice of coding scheme employed and

vice versa. In the current system that we discuss in detail, we are concerned

with the PM systems. We will represent the output of the modulator by dk.

Details of the encoder and specific modulation scheme used will be presented

in Chapter 3.

2.2 Uncoded System

We now briefly describe the transmission end of our model for the uncoded

system shown in Figure 1.2. The source is identical to that in the coded

system. The modulator now takes p consecutive binary source bits and maps

them to a point in the signal constellation. The output to the modulation is

represented by dk.

2.3 Channel

Although, in many physical systems, the actual transmission takes place over

Band Pass Channels, they can conveniently be modeled by Equivalent Low

Pass Channels [15]. Furthermore, prior to sampling most channels are contin-

uous. The continuous channels also require transmission and receiving filters

to restrict the signal to required Bandwidth and its efficient reception. We

simplify our model by including these filters and the sampler into the channel

model. By doing this, we also assume that the channel is synchronous. Thus

our channel is the Equivalent Discrete low pass Channel (EDC). The EDC

is assumed to be stationary (which can be relaxed for later discussion), it

introduces InterSymbol Interference (ISI) which for most of our discussion



will be assumed to be linear. The channel also introduces Additive White

Gaussian Noise (AWGN). The output to the channel is represented by r_.

If # is the function performed by the channel upon the vector d(k) =

[dk+Ll, • •., dk+l, dkdk_l.., dk-L2] then

r, = g(d(k)) + (2.2)

is the output of the channel, where nk is complex AWGN. If g is linear

-1 L_

rk : E gidk-i "_- godk "_- E ffidk-i "_ nk' (2.3)
i=-Lt i=1

where {gk} is called channel coefficient sequence. The first term in (2.3)

will be referred to as pre-cursor ISI, traditionally g0dk is called the signal

component, the third term is post-cursor ISI while the last term is the noise

component. Like-wise gl and L2 are called pre-cursor and the post-cursor

memories, respectively. Note that we have assumed non-causal channel im-

pulse response which is equivalent to disregarding any channel delay in the

EDC model. The total memory of the channel is L = 131+ 132. Both systems:

coded and uncoded, have the same type of channel i.e. EDC. The receivers in

both cases operates upon the received sequence {rk} and produces decision

sequence {dr} which is hopefully close to {at} except for some delay.



Chapter 3

Coding and Modulation
Scheme

Error Control Coding is a technique for improving system performance. Most

of the research effort in this area has been spent for Systems with AWGN

channels. The main objective is to introduce redundancy to accentuate the

uniqueness of each message. The redundancy is introduced in a manner so

that it is very unlikely that the channel disturbances will corrupt the received

message to an extent that it loses its uniqueness. Another important objec-

tive in designing a code is its ease of decoding. Thus a coding engineer tries

to optimize the trade-off between accuracy of transmission and complexity

of decoding. In general Error Control Encoders take a sequence in the in-

formation sequence space and map it to a point in a larger sequence space

in such a manner that the minimum mutual distances between all possible

pairs of information sequences is increased. For a good code, the increase in

the distance improves the performance to an extent that it offsets the loss in

performance due to introduction of redundancy.

3.1 Classes of Error Correcting codes

Two major classes of error control codes exist, namely Block codes and Trellis

Codes. Trellis codes deal with continuous stream stream of symbols, whereas

Block Codes encode a finite number of symbols at a time. The scheme to

be presented can probably be adopted for trellis codes, however, it can be

10



explained best with the help of Block Codes. Block codes can be subdivided

into a number of classes including binary codes, RS-codes [27] and so-called

Ungerboek codes 1 [1] [2].

For Ungerboek Codes a dense signal constellation is selected. Using a

systematic encoding process the distance between the points is effectively

increased. The construction of these codes usually involves one or more sim-

pler codes. The choice of signal constellation effects the choice of code and

vice versa. However, the technique for combining the coding with equaliza-

tion is quite general and would work with any binary or non-binary block

codes in its current from. We use Half Leech Lattice (HLL) code for the

purpose of illustration. In the remaining sections of this chapter we explain

the particular type of modulation-coding scheme we used.

3.2 Signal Constellation

Due to nature of the physical channel of our interest, we were forced to

use PSK. Half Leech Lattice Code, suits well to 8-PSK signal constellation.

8-PSK contains eight signal points in its constellation (see figure 3.1), and

therefore it can carry three bits of information per symbol. The 8-PSK signal

constellation points can be considered as eight roots of unity i.e. {eJ'_ }v,= 0

A. These roots form an abelian group under the usual multiplication.

The subset So _ {eJ'_}_=0 C A actually forms a subgroup with respect

to the usual multiplication. We use the symbol "F" to show that a subset is

in fact a subgroup. In this notation we can write So I-- A. We define relation

,-_ on A by: z -_ y ¢_ z + y E So. It can readily be verified that the relation

defined above is a legitimate equivalence relation. An equivalence class is

the set of dements th£t satisfy the equivalence relation. Set So itself is the

trivial equivalence class. Let $1 be the class equivalent to e_'_. It can be

verified that $1 = {eJ'_'",-_/_-}_= 0. All the equivaIence classes always partition

the group. Equivalence classes w.r.t, the subgroup are called its Cosets. In

the present case, S1 is the coset of So. The set of all equivalence classes of A

w.r.t. So can be denoted by _ and it contains two elements namely So and
SI. The set of equivalence classes is also a group. The identity element of

this group is the subgroup w.r.t, which the Equivalence relation is defined.

tUngerboek's technique works for both, Trellis and block codes.

11



{ needs explanation }

}n=o of A. It is also a subgroupNow consider the subgroup So0 = {e j'_} 1

of So i.e. Soo F-- So E A. The equivalence relation :e _-, y ¢* z-y E

Soo partitions A into four equivalence classes each containing two points.
A

The set of Equivalence Classes EToocontains four elements which are, Soo,
• '_4_-._J-iI r ,;7 4_-.._

= }1= 0 •Sol Slo= •  n=oand = . SooandSol
partitionSo, whereas, $io and $11 partition$I.

Similarly, each point in A can be thought of as equivalent class of the

singleton set Sooo _ {e/'_ = 1}, which is the trivial subgroup of all previous

subgroups i.e. Sooo f- Soo E So f- A. Thus, ^ is a the set of eight

equivalence classes. The last partitioning, partitions Soo, Sol, $1o and $11

into two equivalence classes each. The series of partitioning described above

is shown in figure 3.2. If every set in a class of sets A is partitioned by sets in

a class of sets B then we write A _ B and we say that B is a finer partition
h isA A A Note e.g. that s-_00of A. In this notation, we can write _0 -< _ -< s-_0o"

!

a finer partition of ^

3.3 Half Leech Lattice Code

Each HLL code word consists of 24 symbols, each capable of carrying 3 bits

of information. Therefore, each symbol can be mapped to a point in A.

The 24 symbols Mtogether can be mapped to a point in a 24 Dimensional

Cartesian product complex space. The total capacity of uncoded 24-symbols

is 24 x 3 bits which can carry 224×3 different messages. Each message can be

mapped to 224×3 distinct signM points in the 24-D space that satisfy the 8-

PSK constraint in every dimension. These points actually form a Cartesian

24 = A_4.product set II_=IA The projection of each point in A 24 over any

(complex) dimension is one of the 8 points in A.

12



3.3.1 Algebraic Structure over A 24

Every point x in A 24 is a 24-Dimensional point of the form (eJ'_,, eJ_

We define the product multiplication over A 24 as follows:

. ,t . ._. _._._let ¢ = eJ'_,e3",,...,e" , )

and V = ) (3.1)
then ¢y =Ix te'"_.,_.__&,, e_.,,_,_+_,....., ... , e_,_._,, ).

If the multiplication identity is the point (1,1,..., 1) and the multiplication

inverses are defined in the obvious sense, the set A 24 becomes an abelian

group.
With reference to the notation introduced in section 3.2, consider the

product set Po a 24 A24= II_=lSo C . It is easy to show that Po r- A 24 w.r.t.

the product multiplication defined above. We

Po as ¢ _, y ¢¢, x +y E Po where ¢,y E

the above relation is a legitimate equivalence

define relation .-- on A 24 w.r.t.

A 24. It is easy to show that

relation and that it partitions

the group A 24 into 2 24 equivalence classes. The set of these equivalence
A_4 A24
--. IIl= 1S_, =classes is denoted by 1"0 Each element in To is of the form 24

[Sq ×S_ x...xSq,],whereile{0,1}; 1<I<24.

The sets Poo /x 24 A24 zx A24= Hi= 1S0o0 C are alsoIIi=lSoo C and P00o = 24

subgroups, and in fact Pooo Y- P0o E P0 I- A 24. These subgroups partition

A 24 into equivalence classes in a manner similar to that described in the
A24

previous paragraph. Sets of equivalence classes thus obtained are _ and

A24 224X2 224x3Pooo' containing and equivalent classes, respectively. The elements
A24 Zx

IIl= 1S_j,of _ are of the form 24 = [Shj_ x Si2j2 x .. × Si24j2_], and those of

^2, ... wherePooo are of the form II _4 S A

it,jl, kl E {0, 1}; 1 < l < 24. We now have a series of partitions of A 24 viz.
24 A_4 A 24 h 24 A24

A "_ _ < _ -< P-_0o" Note that, equivalence classes of _ partition each

A 24 224 A 2_class of _ into parts. Similarly, each element of "_0 is partitioned into
A_4

224 equivalence classes by _'_oo"

_ L.22d, _
, . , . , e" 8 ).

3.3.2 The Code and Encoding Process

We will denote the subset of A 24 that consists of HLL the codeword points

by C. HLL uses Extended Golay and Even Parity codes (both are binary

13



codes)in the construction. We define set distance between two subsets A

and B of N dimensional complex Space as

d(A,B) = min{d(a,b) : 'Ca 6 A, Vb 6 B}, (3.2)

where d(a,b) is the usual squared Euclidean distance between a and b. By

definition d(A, A) = 0. We also define the Minimum distance of a set A by

d,,,i.(A) = min{d(a,b):Ya, bE A, a_b} (3.3)

e.g. din,. (A) = [2 × sin(22.5°)] 2 _- 0.586. Note that d(So,S1) = d_. (A) "_

0.586. Thus points closest together in A belong to different equivalence

classes. Also note that d(Sio, Six) = 2 and d(Sijo, Sij_) = 4 for i,j 6 {0, 1}.

Now consider Q1 24 24 _24= = IIz:xSp,. Q1, Q2 e WIIt=lSit and Q2 Then and

Qx # Q2 if i, :fi p_ for at least one 1. Then d(Q_,Q2) = E,=_24d(Si,, Sp,). By

taking all it = pt except one we see that

A 24

= min{d(Qx,Q2):YQx,Q, E --_o,Qx ¢ Q_}

= d(S0, $1).

The encoding process is carried out in three steps. The first step uses

the Extended binary Golay Code (24, 12, 8), the second step the Even Parity

code (24, 23, 2) and the third step uses the trivial code (24, 24, 1).

Step 1 Twelve information bits are taken and encoded to obtain an ex-

tended Golaycodeword, sayi = (ix,i2,...,i_4) where it E {0,1}; I < l < 24.
A24

Let the set of all Golay codewords be G. We define a map fl : G _ --p--j, as
follows

• = IIt= 1Si,/x(ix,*2,...,i2,) 2, (3.4)

i.e. the Ith bit of the codeword selects the equivalence class Sit in the /th

dimension of A 24. Thus the Golay code word selects an equivalence class in

^2---2-4Note that not all equivalent classes in A24 can be selected by GolayP0"
codewords. We denote the image of set A over any function f by f(A). In

this notation

{IIi=xSl, : ,...,Ix(G) = 24 V(i_,i2 i2,) 6 G}.
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A24

It can be shown that fl(G) v "fi'_o" { needs explanation } Note that the

function fl preserves the group structure of G. We now proceed to find the

minimum distance of fl(G).

Lemma 1 The minimum distance of fx(G) is 8 x d(So, $1).

= IIi=lS_ , and Q2 =Proof: Let Q,,Q2 e £(G) then Q1 24

24 Spz. Then i (i1,_2,..., p ,p2,HI= 1 -- " i24 ) and = (Pl ,.. ,P24) are

Golay codewords (i,p E G), and they differ at least in eight

locations. This means that Si_ _ Sp, for at least eight values of I.

Thus,

8

d(Q,,Q,) = _, d(S,,,Sp,) > _ d(So, S,) = 8xd(So, S,) _- 4.686
il#Pr i=I

Since, there is a codeword in G with exactly 8 non-zero bits we

have

A24

d.,,.(f,(G)) = min{d(Q,,O2) : Q,,Q2 E -_o 'Q' 4 Q2}

= 8 x d(So, S1) _- 4.686.&

Hence, the selected sets of points are at least at a distance of 4.686 from each

other.

Step2 Twenty three additional information bits are encoded to obtain

a twenty four bit Even Parity code say j = (jl,jz,...,J24) where jt E

{0,1}; 1 < I < 24. Let the set of all even parity codewords be E. It fol-

lows from our discussion in section 3.2 that Sis is partitioned by Si,0 and S_,1.
A24

We define a map f2 : E ---* _ by

fz(jl,j2,.. ,j24) 24 ,• = IIl=lSiz/r, it's as selected infl

i.e. the lth bit of the codeword selects the jtth equivalence class in Si_. The

range of f2 is f2(E). We observe that f_(E) depends upon the choice of the

equivalence class made in step 1. We define F1 = fx and F2 = f_ o F1 = f2 o fl.
A24

ThenF2:GxE=¢,_ and

= Hl=lSirj r,F,(i,j) 5, .

The range of F2 i.e. F2(G x E), is fixed. { F2(G × E) is a subgroup ? } We

Now find the minimum distance of f2(E).

15



Lemma 2 The minimum distance of all possible sets f2(E)

is 2 x d(Soo, .-Cox).
Proof: Let Q1,Q2 e f2(E), then Qx = 24IIt=lShj,, Q2 =

24IIt=lSi,p ,, (i_,i2,...,i24) C G and (jl,j2,...,j24),(pl,p2,...,p24) E

E. Then j and i differ at least in two locations when j ¢ p. This

means that Sid_ ¢ Si_pl for at least two values of l. Therefore,

d(Q,,Q_) = _ d(S,o,,S,,,,)
J_#pl

>_ 2 x d(S_,o,S_,_)

= 2xd(Soo, Sol)=2x2=4.

Since, there is a codeword in E with exactly two non-zero bits

d.,. (A(c))= 2 × d(Soo,So,),_

Step 3 Twenty four additional information bits are taken, say k = (kl, k2,.. •, k24).
A24

Let T be the set of all possible 24-tuples. We define f3; T ---* p00--"_as

.f3(kl, k2, , k24) 1-[24 C'• . . = t=lOiljtkl,

where il's and jt's are as selected in steps 1 and 2, respectively, fa(T) depends

upon the choice of equivalence class made in steps 1 and 2. Define F3 =
A24

fzo F2 = fsof2ofl, then F3 :T x G x E --* _ and

F3(i,j,k) n _' s= I=1 iljtkl"

A_4
The range of F3 i.e. F3(T x G x E) is fixed. The points in _ are singleton

sets, so that map F3 can also be considered as F3 : T x G x E _ h 24 and

F3(T x G x E) = C. Note that d(Shj, o, S_,i,_) = 4, therefore, d(Q_,Q2) =

4;VQ_,Q2 e fB(T);V possible f3(T).

3.3.3 Minimum Distance of the Code

We now show that the minimum distance of the HLL code is 4.

Theorem 3 The minimum distance of C is _.

Proof: Let cl, c2 E C. Then there are three cases:
A24

Case 1:c1,c2 belong to different equivalence class of --if-0" Then

16



by Lemma 1 d(cl, c2) >__8 × d(So, Sx) = 4.686.
A24

Case 2:Cl,C2 belong to different equivalence class of T_oo but
A34

same equivalence class of -Fg'o" Then from Lemma 2 d(cl,c2) >

2 x d(Soo, SOl) = 4.
A24

Case 3: cx, c2 belong to same equivalence class of P-_00"then from
our discussion in step 3 it follows d(cl,c2) = 4. Hence, the mini-

mum distance of the Code is 4. &

3.3.4 Ecoding in practice

We now discuss the encoding process for the HLL codeword. The manner in

which encoding is actually performed is depicted in figure 3.3. We consider

the ith HLL codeword. First, 12 bits of information bits are encoded to

form the ith 24 bit Golay codeword gi = [gij]_l. gij determines the most

significant bit in the binary representation of the jth symbol of the ith HLL

codeword i.e. cij. Note that clj E {0, 1,...,7}. Second, 23 additional infor-
[e t24marion bits are encoded to form the ith even parity codeword ei = t ijjj=l.

The second most significant bit of cij is determined by eij. Finally, another

24 information bits determine the least significant bit of cij. Hence,

clj = 22glj + 2eij + ulj

where ulj denotes the uncoded information bits used in the final step.

17



Chapter 4

Decision Feedback

Equalization

Our Codesigned receiver is primarily based upon a number of Decision

Feedback Equalizers. In this chapter we explain how a DFE works. In the

Decision Feedback equalizer, a channel symbol is demodulated via a two fold

process;

1. by applying filtering to a register containing channel samples taken

at times earlier and including the time of the channel symbol being

demodulated.

2. by applying filtering to a register containing the decision which are the

previously demodulated symbols.

The first filter is known as the Feed Forward Filter (FFF) and the latter

as the FeedBack Filter (FBF). Figure 4.1 shows a schematic for such an

equalizer. The function applied to the registers are intended to remove the

effect of channel distortion and to produce an accurate prediction of the

transmitted modulation symbol.

4.1 Classification of Equalizers

There are two major types of equalizers fitting this description.

1. A Linear Equalizer; consists of FFF and demodulator - FBF is not

present.
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2. A DecisionFeedbackEqualizer;both FFF and FBF are present.Pres-
enceof a FBF constitutes a non-linear process. The act of replacing
a prediction point (which can lie anywherein the complexplane)by a
decisionwhich is a signal constellationpoint, is a non-linear process.

Eachof the abovecan be further classifiedinto two subclasses.

. Linear Function: the functions applied to the registers are both linear.

If h is the function applied by a filter and the inputs to the filter

are _x = [zl,z2,...,z,] T, the output of the filter can be expressed as

_=t z_hi, where hi are the filter coefficients.

. Non-Linear Functions: at least one of the functions applied to one of

the registers contains non-linear term, so h(_x) cannot be expressed as

a linear combinations of elements of x.

Our emphasis will mainly be on Decision Linear Feedback Equalizer. How-

ever, the technique to be described is equally applicable to Decision Non-

linear FeedBack Equalizers.

4.2 Operation of the DFE

For convenience we repeat equation (2.2).

= g(d(k))+ nk.

Let the function applied by FFF be h I. Define

i &
r, = hl(rk) = (h ! o g)(d(k)) + hl(nk),

and define

Then,

&
f _= h log and vk=h!(nk).

! = y(d(k)) +

Let {dk} be the sequence of decisions made by the DFE which is hopefully

close to {dk}, the transmitted sequence. Let _k _ [d_-l,dk-2,'",d_-L_] T"

Let the function applied by the FBF be h s. Then the output of the FBF is

hb(d(k)).
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The prediction to the transmitted symbol, denoted by Jk, is defined as

dk =_ ,_' - hb(d(k)) = h_(r_)- hb(d(k)).

The prediction is demodulated into the nearest (in the squared Euclidean dis-

tance sense) signal constellation point. The demodulated symbol is actually

the decision of DFE dk. Thus,

d_= m_n{d(_,p.)),

where p,, is the nth constellation point. For 8-PSK, p,_ = eJ'_. For Decision

linear FeedBack Equalizer, we have

0 K2

dk = E hirk-i - E hjdk_j,

i=-Kt j=l

h 0where { _},=-K, and {hi}K21 are the feed forward and feedback coefficients,

respectively. From here onwards by DFE we will mean Decision Linear Feed-

back Equalizer unless mentioned otherwise.

4.3 Optimizing the Coefficients of DFE

One can optimize the coefficients of the DFE using Mean Square Error (MSE)

criterion [15] or the Zero Forcing criterion [29]. Because of its superiority, we

discuss the optimization using MSE criterion. We introduce some notation

first,

h !

h_b

For convenience, we repeat,

We also define

[h_K,,..., h_x,h0]_ (4.1)

a__[hl,h2,...,hK2]T (4.2)

_= [rk+K,,...,rk+x,rk] T (4.3)

d(k) _ [d__l,d__2,...,dk_K2] T (4.4)

d(k) = [dk_t,d__2,...,dk_K2] T. (4.5)
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Then,

Define

Then,

& = (bl)r,(k)- (bb)_d(k).

[h,] ,46,h__a_ -_hb and _ = d(k) "

dk = h_r_r.

4.4 Minimizing the MSE

For the analysis we assume that d(k) = d(k) which implies that the previous

decisions of the DFE are correct. The mean square error is

¢(_h) = E{Idk - dal_}, (4.7)

Z_
which is minimized when the error ea = dk - da is orthogonal to da (Orthog-

onality Principle), i.e.

E{dk( k dk) T} = 0

E{d_dk} = E{d*(k)dk}.

By substitution, value of dk we get

H * T H *
E{b,,ptr r h_opt} = E{bopd- &},

where superscript ,,n,, indicates Hermitian transpose and the subscript "opt"

indicates the particular vector h that gives minimum MSE. Thus,

E{r'rT}h_t = E{r*d_}.

Let X a= E{r,r T} and W a= E{r*dk}. Then the previous equation can be

rewritten as

Xb_, = W. (4.8)
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!
,: v,

4.4.1 Finding the Coefficients

Let us see what it means in terms of the individual coefficients. Consider X,

substituting values from equation (4.6) (with d(k) = d(k)),

X = E{r__°rr}

-
= [E{r*(k)rT(k)} E(r'(k)dT(k)}E{d*(k)rT(k)} Z{d*(k)dT(k)} ]

Let

n _ E{r*(k)rr(k)} and G _= E{r'(k)dT(k)}

Note that Z{d*(k)dT(k)} = I, where we a:ssume that signal zero mean and

its variance is 1. Then,

[ ]• R G
X= G H:,: I

5-

1w= [[E(d'(k)Zk}= 0 '

Similarly,

where W1 = E{r*(k)dk}. E_uation (4.8) can now be written as

R GG_ I ] [_hopth_t ] = [W110 (4.9)

nb_- ab_ = w1 (4.1o)
" ; _ (4.11)G h_,,vt-b,mt = 0

From equation (4.11) we have
i

h_bopt= Ggh_t, t. (4.12)

Substituting this value in equation (4.10),

(R- VG")bl,

= W1

= _,_ (4._3)
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Feedforward Coefficients

Now we find the elements of the vector W1 and matrix (R - GG H) in order

to find elements of _h_t.

W1 = E{r'(k)dk}=

G = E

GG H =

r_+K *r_+l

g;¢1+1 g;c,+_ ...
:

g; g; ...
g; g; ...

EK_ g*g,+igg,+i

_K_ g;+igg, +i

E_I g" gg,+,

gk

g_
g_

E{r_+g, dk}

E{r_,+ldk}

E{,_dk}

dk__ • .. dk__] }

)

g_+K2

g*+K2

E_I g'K,+_gl+i

(4.14)

(4.15)

... 1

: " I4"16)•.. E_'_ g;+,gl+, E_ g;+,g,

where

R

E{r'(k + K1)rT(k + K1)}

E{r'(k + 1)rT(k + g_)}

E{r'(k)rT(k + g_)}

[_ 10 4)
= t lmll=-Ktm=-K1

... E{r*(k + K_)rT(k)}

... E{r*(k + 1)rT(k)}

... E{r'(k)rT(k)}

st,, = E{r'(k - l)rT(k - m)}

= _ __. g_gjE{d*k-,-idk-,,,-J} + E2{nk_,nk_.,}
i=-K* d=-KI

Ks

= _ g_g__,,,+_+ No&_
i= - K,

(4.17)

(4.18)
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Using equations (4.17) and (4.16) we get (R - GG H)

(R-GG H) =

-Kt
_]":(-_K-_K,g_gi + No ... _i=-gl g_g_+t-gl _](g_g, g_g_-g_

1 1 1
_i=-Kt• "" _]i=-g, No g_gi-1_i=-g, g* gi+gt-I g* gi +

0 0 0 No_'_i=-K, g_gi+g_ "'" g_gi+t 9_gi +

Putting value of (R- GG H) and W1 in equation(4.13), we get coefficients of

the feed forward filter.

-Kl
_i=-gl g_g_ + No _(=K_IK t g_gi+t-K1 -K1"'" _i=-Kl g_gi-Kt

1 1 1
_i=-KtEi=-K, No g* g_-I_]_=-KI g* gi+K_-I ... g*g_ +

0 0 o
E_=-g, Ei=-K, No_,_=-K, g* gi+K_ ... g*gi+l g_gi +

h-K 1

h'_l
ho

F.,. ]g_ n, _ (R GGH), thenLet t.,_ijji=O,j=O- --

gl

x_jh_j = g* i = O, 1,2,...,K_,
j=O

= x-_Kt -iwhere :r0 z-.,t=-Kt g_gl+5-1 + No_ij.

Feedback Coefficients

Putting value G in equation (4.12), we observe that the feedback coefficients

can be expressed in terms of the coefficients of the feed forward section.

hi

h2

hK2

gKt + 1

gKt + 2

gKt +K2

... g2 gl

• .. g3 g_

:

• .. gK_+l gg2

h-gt

h_l

ho

h i -_ g__jh_j i = 1,2,...,K2
j= - KI

g*--Kt

g*-i

g;
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4.5 Adaptive Decision Feedback Equalizer

When the channel is unknown, the matrix X and the vector _W are unknown.

Any of the well known adaptive techniques can be used to estimate the chan-

nel coefficients. The simplest adaptive algorithm is the stochastic gradient

algorithm.

The gradient of ¢(_h) w.r.t, h is given by,

Vh e = 2E{(dk - dk)x_}.

Separating the feed forward and feedback parts and estimating the gradient,

we get

_hJ(k+ 1) = _hS(k)- _%_'(k)
h__(k+1) = _h_(k)-Z_%'_d'(k),

where ek = dk- dk, and a, fl are step sizes which determine convergence rate.

4.6 A Lower Bound on Signal to Noise Ratio

A lower bound on the Signal to noise ratio at the input of the Demodulator

achieved by the MSE-DFE is obtained by assuming absence of decision errors

in the FBF. Under this assumption, by putting values of bopt from equation

(4.8) into equation (4.7), we obtain

e,_i.(K1) = 1- g_jh_j.
j=-KI

By taking the limit K1 ----* eo (infinitely many feed forward coemcients), we

obtain the smallest possible MSE denoted as ¢,_i,_. The signal to noise ratio

(_-_0 - energy per .symbol)is [15]
nolse varlance

E, < I- e,,,in
NO _ _rnin

_ No [15] and _ -- _!._1where E, = 1. In absence of ISI, the e,,,i,_ - l+N0 No -- No"
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4.7 Error Propagation

Consider equations (2.2) and (2.3). DFE attempts to cancel the ISI. The

best any ISI canceller can do is to remove both precursor and post cursor

ISI. Such a canceller can be called ideal canceller. The prediction from the

ideal canceller would be

dk = godk + nk,

i.e the overall impulse response (say {£}) of the system prior to demodula-

tion is fk = go6(k). This also implies the overall frequency response is flat.

The manner in which this hypothetical receiver makes errors is same as that

by the receiver in a system which is designed according to the Nyquist cri-

terion. Hence, the ideal canceller makes random errors; every symbol error

is uncorrellated to other symbol errors. A sample of output symbol errors of

the ideal canceller is shown in figure 4.3(a)

The FBF filter of the DFE in fact attempts to from a replica of the post

cursor ISI. In doing this, it succeeds only if the previous decisions (d(k))

are correct. Whenever there is an error in d(k), the FBF is not able to

form a perfect replica of the post cursor ISI. Therefore, subsequent decision

errors become more likely whenever d(k) # d(k). This results into error

propagation; errors tend to occur in clusters. For DFE we have cluster of one

or more errors for every error that could have occurred in the ideal canceller.

Error propagation is depicted in figure 4.3(b).
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Chapter 5

The Codesigned Receiver

Now we describe the Codesigned receiver. We consider the data transmission

system shown in figure 1.1. The transmitter contains a block encoder, helical

interleaver and the modulator as discussed in chapter 2. We want to use

Decision Feedback Equalizer (DFE) in the receiver. However, we know from

our discussion in chapter 4 that DFE suffers from error propagation. An

attempt to use a simple juxtaposition of DFE, Deinterleaver and Decoder

as shown in figure 5.1_ gives poor performance (sometimes worse than that

of the DFE alone) because the number of errors are far too many for the

decoder to handle. One might consider solving this problem by adding error

correction between the symbol detection and the feedback register as shown

in figure 5.2. This transpires, at least in the form suggested, to be impractical

and/or disappointing in practice. The reason is simple. The correction either

involves excessive delay before decoded data is available to the feedback

filter or the code selection is limited to codes of short length, consequently,

limiting the performance. Eyuboglu [3] introduced the use of interleaving

which scrambles the input data stream in such a manner that every received

symbol is preceded by either a symbol of a codeword transmitted earlier or

by a sync symbol. His technique, however, suffers from the disadvantage

that only the decoded data symbols are available to the Feed Back Filter

(FBF). This_ not only restricts the size of the FBF, but also makes its length

variable, periodically (it varies with the index j for k = Ni + (N - 1)j).

We present a technique that makes it possible to provide both the decoded

and undecoded data to FBF. Thus for the symbol locations where decoded

version of the symbol is not available, the undecoded symbols can be used.
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Therefore, a full length FeedBack Filter can be used. This, in turn gives
superior equalization and hencebetter performance. Beforewe discussthe
structure of the receiver of the receiver, it is instructive to consider some

properties possessed by the sequence {cA}.

5.1 Properties of the Interleaved Sequence

Consider the channel symbol rk; the corrupted version of dk which in turn is

the modulated version of cA. We can say that rk is the output of the channel

corresponds to the encoded symbol cA. We denote this correspondence by

rk _- dk -_ cA; the symbol "__" should be read as "corresponding to". Note

that k = Ni+(N-1)j; 0 < j < (Y- 1). The cA is in fact the encoded

symbol qj, i.e. it belongs to the i th codeword. We consider the received

symbol immediately preceding rk , i.e. rk-t --- ck-x. We now show that c__1

either belongs to (i - 1) th codeword or is a sync symbol.

Theorem 4 Ifck = c,j; k = Ni+(N-1)j; j = 0,1,...,(N-

1) and k > (N- 1)(N-2) + 1, then ck-x = c(_-l)s,; j' =

1,...,(N - 1) or ck-x = ci,o; some i' >__O.
Proof:

k-1 = Ni+(N-1)j-1

= Ni + (N - 1)j - N(N- 1) (5.1)

Case 1: If k is such that j = 0,1,... ,(N - 2), then

k - 1 = N(i - 1) + (N- 1)(j + 1).

Thus, in this case, c__1 belongs to the (i- 1) th codeword.

Case 2: Ifj = N - 1, from equation (5.1), we have

k-1 = Ni + (N-1)(N-1) - N + (N-1)

= N(i-1)+(N-1)(N)=N(i+N-2).

Then ck-i is a sync symbol. &
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From the above theorem, it follows that when the reception of the channel

symbols corresponding to the symbols of the ith is completed, it is guaranteed

that the symbols corresponding to the (i- 1)th codeword would also be

received earlier. Therefore, it is possible to process the channel symbols

corresponding to the (i- 1)th codeword before we process those corresponding

to the ith codeword. Hence, the processed symbols of (i - 1)th codeword

can be used during processing of channel symbols corresponding to the ith

codeword. Actually, we can do better than this, as the following theorem

predicts.

Theorem 5 Ifck = cij; k = Ni+(N-1)j, j = O,1,2,...,(N-

1), and k > (N- 1) 2 , then either ck-l = ci,j, with i _ < i;

for some j' = 1,...,(N- 1) (i.e. c__t belongs to a previously

transmitted codeword) or ck_t = ci,0 (i.e. ck-t is a sync symbol);

V Is.t. l= 1,2,...,(N- j).
Proof:

We prove it by induction using theorem 4. For l = 1, the given

statement is true, by theorem 4. Let it be true for I = n, n =

1,2, ... ,(N - j - 1). Then, either k - n = Ni" + (N - 1)j" for

i" < i or k-n = Ni", i.e. cA is a sync. We now rule out the second

possibility. Note however, k - (N - j) = Ni + ( N - 1)j - ( N - j)

= N(i- 1 + j). Thus, ck-(N-j) = c(i-l+j)0 =_, ck-(2v-j) is a

sync. Thus c__,_ for n = 1,2,...,(N- j - 1) cannot be a sync

since two consecutive syncs should be exactly N symbols apart.

Therefore, our assumption for I = n definitely implies k - n =

Ni" + (N - 1)j" for i" < i.

Now we investigate the case for I = n+l, cl,-,_-i = c2vi,,+(N-1)/,,-1

and from theorem 4, it follows that either ck-,_-i = cm,+(N-1)j

for i _ < i" < i or ck-,_-i is a sync. Thus the statement is true for

1 = n + 1. Hence it must be true for all I = 1,2,...,(N -j). &

What this theorem says can be summarized in the following table. Here we

assume that rk is the symbol being processed (demodulated).
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Encoded Symbol cu _ rk Symbols of earlier codewords/syncs

ci(N-1) ck-l= sync

Ci(N-1) Ck-1 = C(I-X)(N-1)
Ok-2 = sync

Ci(N-2) Ck-I -----C(I_1)(N_2)

Ck_ 2 = C(i_2)(N_I )

Ck_ 3 : sync

C11 c__I = c(i-1)2

Ck_ 2 : C(I_2)3

Ck_(N_2) = C(i_(N-2))(N-1)

ck-(N-1) = sync

5.2 Processing Using Array of DFEs

Since rk _ c_ = clj, we can also write rij = r h then rij -_ cij. We have

already defined r(k) as r(k) = [rk+g,,...,rk+x,rk] T, where (K1 + 1) is the

number of coefficients in FFF. In the same notation, we define,

r(k + j(N- 1)) _= [rk+K,+_(N_l),...,rk+t+j(N-1),rk+j(N-1)] T

for j = 1,... ,N- 1. We also had d(k) = [dk-l,dk-2,...,dk-g2] T, where K2

is the number of coefficients of FBF. As for r(k + j(Y - 1)), we define

^ T

d(k + j(N- 1)) _ [dk_l-l-_(N-1),dk-2+j(lV-1),...,dk-K2+j(JV-1)]

for j = 1,...,N - 1. Note that each of the vector pairs

[r(k + j(N- 1)),d(k + j(N- 1))]

can be considered as the contents of a DFE. We can form an array of DFEs in

which the jth DFE- denoted as DFEj - contains pair [r(k + j(g - 1)), d(k + j(N - 1))]

in its registers. Let Fj be the feed forward register and Bj be the feed-

back register of DFEj. Then Fj contains r(k + j(N- 1)) denoted by

Fj _ r(k + j(N - 1)), also B_ _-_ d(k + j(Y - 1)).

30



It follows from our discussionin Chapter 4, that the symbol being de-
modulated by DFEj is rk+j(N-1) _ Ck+j(N-1). The corresponding prediction

is dk+j(2¢-l) ( thus rk+j(N_l) _" dk+j(N-1) _ Ck+j(N-1)). We can stack the

predictions from all the DFEs of the array in a vector

= +(N-l), • •, •

If the channel is free of noise and ISI, then a k should be same as the encoded

symbols' vector

c_ = c_+(N-1), ck+2(N-1),-- .,C_+(N-1)(/V-1 •

We say that _k _- ca" For k = Ni, ck+j(N-1) = c_j, therefore we have

_% ----_ci= Cil,C_2,...,Ci(N-I),

which is the i th codeword. Hence, at time intervals k = Ni, the DFE array

defined above, processes symbols corresponding to the same codeword.

Suppose we are provided with decision vectors d(k + j(N- 1)) for j =

1,..., N - 1 and k = Ni. Then all the DFEs in the array collectively predict

the (Y- 1) dimensional prediction vectors "_d(N0. This vector (_(N0 -_ c,)

is taken by the decoder which soft decodes d(_- 0 and provides the estimated

F_ _. ,_/(N-1)]- When ci = _ _ the decoder madecodeword-i = LCil,c/2, .....
error-free decision. These decoded symbols can be re-modulated to form

-_i = [a_ix,0_i2,...,_i(N-x)], where _,j is the modulated version of _j. Note
that we have modified the decision mechanism of the DFEs in the array.

Rather than replacing 0_ij by the closest modulation point 0_ij in the single

(possibly complex) dimensional constellation -- local estimate, we replace the

complete vector d i by a closest codeword point _ in the (Y - 1) (complex)

dimensional constellation -- global estimate. The local estimate dij is not

necessarily equal to aYij. The decoding algorithm, working on a global basis,

might reverse adverse local estimates. Note that the DFE array is capable

of processing (N - 1) symbols at a time.

In order to process the next block of symbols 1 the DFE array is updated

as follows,

there we are not interested in processing the sync symbol which may or may not contain
information. If it contains information it has to be demodulated separately in the scheme
discussed in this section.
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1. registersof DFEj are shifted as usual:

• an appropriate fresh channel symbol is shifted into Fj.

• gij is shifted into Bi

2. the contents of DFEj are transferred to DFEi_I, j = 2, 3,...,(N- 1).

After this transfer has taken place, the contents of the registers of the

updated DFE array are as follows,

Fj_I _ r(k+j(N-1)+l)
v _ A r

for j = 2,...,(N-I). Note that k+j(N- 1)+ 1, for k = Ni, is

Ni+j(Y- 1)+N-(N- 1) = N(i+ 1)+(g-1)(j- 1). Which shows

that, Vj = 1,...,(N- 2), DFEj now contains the received symbol

r(i+l)j -_ c(_+l)j, as the last entry in the register F(i_l ). This implies

that these DFEs are ready to process the symbols of the next codeword

-c(i+_).

3. The coefficients of the filters are transferred along with the contents of

the registers.

4. The contents of DFEN_I are still unknown. The FN-1 is provided with

r(k+(Y-1)(N-1)+Y). Fork= Yi, k+(Y-1)(N-1)+N= N(i+

1) + (N - 1)(Y = 1), so that the last entry of FN_I is r(_+l)(N-1) _ _ci+_.

After the update, the last entry in Fj is r(i+l)j; j = 1,2,...,(N- 1). If

we assume 2 that the decision vector 0_(k + (Y --- 1)(N - 1) + N) is known,

the DFE array can form the prediction vector d(k+iv) --_ c(i+1); k = Ni. The

decoder can then estimate the closest codeword -_+1 to the prediction vector

_k+N" The whole process can then be repeated for future codewords. Note

that when we initiate the process, we assume the availability of all contents

of Bj for all is. It is clear from the update mechanism that after processing

the very first block, contents of all the Bjs are awilable except for B(N_I).

Note that the first element of the assumed vector -- d(k + (Y - 1)(g -

1)+N)--is d_,-I+(N-1)(N-1)+N. For k = Ni, k - I + (N-1)(N-1) +

_This assumption will be relaxed latter in discussion
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N = N(i 4- (N - 1)). Thus dk-I+(N-1)(lV-1)+N is the sync symbol. For j =

1,2, ...,(Y- 2), the first element of the decision vector d(k 4- Y 4- j(N- 1));

the first entry in Bj, is the modulated version of earlier decoded codeword

symbols _ij. If we assume that the decoder corrects all errors, i.e. _ = c_,

we can expect better feedback.

After processing (N - 1) consecutive codewords, the first (N -j - 1)

symbols in Bj are decoded symbols of earlier codewords for j = 1, 2,..., (N-

2), and, the (g - j)th symbol is the sync for j = 1,2,...,(N - 1). This is

exactly what theorem 5 predicted. Both the sync and the decoded symbols

can be considered relatively reliable, if the decoder is operating in a region

of reliability relative to the uncoded channel. The contents of the registers

for two consecutive operations for the DFE array are shown in figure 5.3

for N = 4. Only the indices of the symbols are shown. The register B d is

more reliable than the register Bj,, when j < j', because it holds relatively

unreliable decisions and they are further back in time relative to the symbol

being predicted.

For the DFE array, please note that:

1 times the rate of trans-l. The DFE's have to operate only at a speed

mission.

2. In terms of implementation, the register contents and coefficients do

not have to be "transferred" from DFEj to DFE(j_I). The registers

can be arranged in a circular area of memory with a pointer to each

register. The transfer can then be replaced by "decrementing" each

register's pointer modulo (N - 1).

3. The DFE array does not process the sync symbol. If the sync does

contain information, alternative arrangements have to be made for its

demodulation.

In the above discussion, we have made the assumption that the decision

vector d(k 4- (Y - 1)(g - 1)), k = Ni is available. Its availability is not

essential (we will soon discuss a technique in which it would be available).

If d(k 4- (N- 1)(Y - 1)) is not available, one can still process the received

symbol, however, full length feedback filter is not possible with the DFE

array. In this case the length of FBF for the jth DFE would be restricted

to (N - j). In the conventional DFE, if the length of FBF is changed, the
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optimal coefficients of the FFF change as well. Therefore, when we want to

use conventional DFE, for the case where the vector d(k + (N - 1)(N - 1))

is not available, the optimal coefficients for the DFEi will be different from

those of DFEj, for i ¢ j.

In order to remedy a similar problem in his receiver, Eyubogolu [3] sug-

gested use of an inferior version of DFE called noise-prediction DFE [15], in

which the FFF coefficients are not effected by the size of FBF. We however,

do not need that since we provide the decision vector d(k + (N- 1)(N- 1))

from a preliminary DFE as discussed in next section.

5.3 Our Codesigned Receiver

Our codesigned receiver has four main components,

1. A conventional DFE operating at the transmission speed. This DFE

will be referred to as fast DFE.

2. An array of (N - 1) DFEs as discussed in previous section. The DFEs

in the array are referred to Slow DFEs.

3. Soft Decoder

4. Modulator: which re-modulates the decoded codeword.

These components are shown in figure 5.4 for N = 4. The operation of

2, 3, and 4 has already been discussed in previous section.

We now describe how the fast DFE fits into the picture. The fast DFE

does not enjoy any advantage over that of a conventional DFE -- it is not

trusted to be as correct as the slow DFEs. It processes the channel symbols

{rk} in the conventional process as discussed in chapter 4. It operates at

transmission symbol rate, predicts the value of a transmission symbol and

replaces the prediction by that of the closest modulation symbol (local esti-

mate). This demodulated symbol is fed into the decision register. The DFE

then takes a new sample into the feed forward register and repeats the pro-

cess. Let the feed forward and the feedback registers be F and B, respectively.

As soon as the fast DFE has processed the received symbol corresponding to

a sync symbol (i.e. after processing the symbol rk for k = Ni, and shifting

the demodulated symbol in B), the contents of F and B are transferred to
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F(N-1) and B(N-1), respectively, along with corresponding filter coefficients.

This is how we provide the decision vector d(k + (N- 1)(N- 1)), where

k = Ni, to the DFE(_r_I). The DFE array processes as discussed in previous

section, whereas, the fast DFE continues its processing in parallel, dumping

its contents to DFE(/=I) after processing every sync symbol. Hence, the fast

DFE is just a preliminary receiver that works without reference to the code

structure and makes crude decisions. However, the slow equalizers use the

code structure and they improve the quality of decisions.

This complete the description of our codesigned receiver. We will make

some final remarks,

1. We do not need special processing for the sync symbol when it contains

information

2. The technique does not depend upon the type of coding or modulation.

3. The fast and slow DFEs can be made adaptive.

4. The functions applied by the FFFs and FBFs of the DFEs are linear

here, but they can as well be non-linear.
.:
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Chapter 6

Simulation results and

Analysis

In this chapter we present the simulation results and analysis. The most

interesting simulations are for 8-PSK modulation with Half Leech Lattice

(HLL) codes. However, in order to show the utility of the technique for

binary systems, we have also included results for BPSK system with (8,4)

Reed-Muller code. Reed Muller code was used primarily for its simplicity of

encoding and decoding. One can improve the performance to greater extent

by using other complicated but more efficient binary codes. For the binary

system three channels selected from published literature are selected. For

the 8-PSK system with HLL, extensive simulations are made for a class of

channels with characteristics of the form (1 + aD)(1 - bD).

For both the binary case, performance of three different systems are com-

pared,

1. Uncoded System: As described in Chapter 1. We call this system

System 1. This is the bench mark system with respect to which we

compute all gains of other coded systems.

2. Coded System with Simple Cascade: This is the coded system described

in Chapter 1. However, the receiver of this system constitutes a simple

cascade of conventional DFE, de-interleaver and Decoder. The receiver

of this system does not attempt to reduce error propogation of the DFE

with the help of coding. Therefore, its performance serves as a lower

bound on the performance of Our Codesigned receiver. Block diagram
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for this system is shown in figure 5.1. This system will be referred to

as System 2.

3. Coded System with codesigned receiver: This is the coded system de-

scribed in Chapter 5. It will be referred to as System 3.

For the 8-PSK case in addition to the above systems, performance of

Coded System with perfect Feedback (i.e. the receiver contains a DFE whose

Feedback Filter is provided with the actual decisions.) is also provided. This

is a hypothetical system which provides an upperbound on the performance.

We will refer to this system as System 4.

Figure 6.1 lists all types of systems considered in this research. Simula-

tions are made for a wide range of Signal to Noise Ratios E__(No) in each case

and Bit Error Rate (BER) are estimated. In order to obtain a fair compari-

son the _ for coded systems is compensated for coding rate. The BER are

plotted as the function of _ ( in dBs). The difference between E__ at a partic-
ular BER, for System 1 any 2, gives the gain due to coding an_r]nterleaving.

We call this gain Coding gain. The difference between _0s of Systems 2 and

3 gives the gain due to Codesigning the receiver by our particular technique.

We shall call this gain the Technique gain. Finally, the difference between

S__N0s of Systems 1 and 3 gives the over gain of the system. Note

Technique gain + Coding gain = Overall gain.

6.1 Simulation Results for the Binary Sys-

tems

We will first discuss the characteristics of the channels selected for the Binary

Systems. In section 6.1.2 simulations are presented.

6.1.1 Characteristics of channels

Channel A was obtained from a published paper [3]. The channel models a

telephone leased line with some pre-equalization at the transmitter. For this

channel the the performance of DFE is very close to that of the matched

filter bound leaving little room for improvement. In this channel ISI is quite

small, therefore, the error propagation in the DFE is very small.
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The channels B and C model digital magnetic recording systems as dis-

cussed by Bergmans in [28]. Their channel transfer function IF(w)[ satisfies

tF(w)l = _/2cosh D(_-- lwl); forlwl <

Here the parameter D characterizes the spatial information Density on the

Magnetic Storage and ranges roughly between 0.2 and 3.0 in present systems.

Apart from a zero at the lower band edge (w = 0) the transfer functions in

this class have attenuation near the upper band edge (w __ 7r) which increases

rapidly with the information density D. Channels B and C correspond to

D = 2.0 and D = 3.3, respectively. Their impulse responses and frequency

characteristics are shown in figure 6.2. Channel 13 represents a relatively

low density system whereas channel C represents the one with high density.

From previous research [23] we know that channel B produces less amounts

of error propagation as compared to channel C. Channel C was chosen for its

harshness observed in previous research. In fact, it failed to respond well to

processing by much more complicated receivers [23][28]. Error propagation

is a serious problem for this channel. The effect of error propagation for

this channel can be seen from the DFE performance which shows a 5-6dB

degradation versus the matched filter bound (Figure 6.5).

6.1.2 Analysis Simulations

Channel A Figure 6.3 gives the performance curves for System 1, System

2 and System 3. The conventional DFE, for the uncoded system, ( System 1)

for Channel A almost achieves the matched filter bound indicating that their

is very little energy present in the ISI part of the received signal (figure 6.4).

Since, the error propagation is insignificant, very small improvement over

System 2 is obtained by using codesigned receiver (System 3). The Coding

gain in this case is 1.65dBs at BER= 10 -3 whereas the Overall gain is about

1.8 dBs. Thus, the performance gain in this case is mostly due to coding.

Channel B Figure 6.4 shows that the Conventional DFE (System 1) does

suffer a degradation of about 1.7dBs relative to the matched filter bound. A

part of this degradation is due to error propagation. The other two curves

( Systems 2 and 3) show that significant improvement (1.4dBs) over System

2 is obtained by using the codesigned receiver (Technique agin), whereas the

coding gain is about (0.3 dBs).

38



Channel C This is the worst channel that we used. The three simulation

curves are presented in figure 6.5. The performance of a simple combination

of coding interleaving and DFE (System 3) is hopeless and its performance

is about 2.0 dBs worse than that of the Conventional DFE. This means

that coding gain is -2.0 dBs. The Co-designed receiver, however, performs

about ldB better than the DFE (Overall gain). It is obvious that error

correction in the feedback path of the DFE, as provided by the codesigned

receiver, is absolutely essential for this channel, when the coding schemes are

to be used. The complexity of our receiver is roughly proportional to that of

two conventional receivers and a decoder which is quit low as compared to

receivers used earlier for this channel [23]. However, high _0 s performance

approaches ( and probably surpasses at higher _-_s due to typical coding

characteristics) to that of much more complicated receivers used in [23].
The above results are summarized in

Channel _ at BER= 103 in dBs
No
Sys. 1 Sys. 2 Sys. 3

A 6.95 5.3 5.15

B 8.3 8.0 6.6

C 11.6 13.6 10.9

the following table.
Gains in dBs

Coding Techn.

1.65 0:15
0.3 1.4

-2.0 2.9

Overall

1.8

1.7

0.9

6.2 Simulation Results for the 8-PSK Sys-

tems

In order to evaluate the performance we performed simulations for a family

of channels. First, this family is described, and then, the simulation results

are presented.

6.2.1 Family of Channels

A family of channels whose characteristics are of form (1 + aD)(1 - bD) are

selected. The parameters a and b range between 0 and 0.9 with increments

of 0.1. This corresponds to a channel with a two zeros in the D plane as

shown in figure 6.6. When a = b = 0 both zeors are at infinity, and the

channel reduces to a simple Additive White Gaussian Noise channel with no

ISI. When either a or b is zero, the channel channel has one zero which moves
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from infinity towards the unit circle as the non-zero parameter increases from
zero to 0.9. Worst channels are obtained when eihter or both zeros are on

the Unit circle.

6.2.2 Simulation results Analysis and Bounds

In order to make reference to the figures convenient for the reader, we make

a table for the figures. In this table, by absolute performance we mean the

Eb/No (in dBs) at which BER of 10 -3 is achieved, where as, by performance

of System X relative to System Y (Gain achieved by System X relative to

System Y), we mean the difference between E_/No of System X and Eb/No

of System Y (in dBs) at BER of 10 -3.

Performance

relative to

of absolute System 1 System 2 System 3

System 1 Fig. 6.7

System 2 Fig. 6.8 Fig. 6.11

System 3 Fig. 6.9 Fig. 6.12 Fig. 6.14

System 4 Fig. 6.10 Fig. 6.13 Fig. 6.15 Fig. 6.16

All the simulation results are presented as 3-D plots, where the Vertical

axis is for Eb/No in dBs, and the other two axis are for parameters a and b

respectively. The plane spanned by these two axis will be referred to as hor-

izontal plane. The simulations were carried out using C language for a large

range of Eb/No for every channel and corresponding BERs were tabulated.

The results were interpolated and values for Eb/No corresponding to BER

of 10 -3 were obtained. Mat-lab software was used to obtain the 3-D plots.

Each figure shows a 2-D surface in 3-D, the lowest point of which should

be visualized to be towards the reader. Every point (c_,_) in the horizontal

plane corresponds to a channel parameters a = a,b = fl i.e. the channel

D-transform is 1 +(a-_)D-a_D 2. The hieght of the 2-D surface at (c_,t3)

is the absolute or relative performance of the corresponding channel. The

figures should not be compared to each other interms of the Vertical axis:

each has its own scale for the Vertical axis. The plots are symetrical (wihtin

experimental error) which is due to the fact that changing the sign of any

channel coefficient of a channel does not change the performance.
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Figure 6.7, 6.8, 6.9 and 6.10 give performancecurvesfor Systems1, 2,
3 and 4, respectively. It is obvious from these curves that the performance

degrades as the parameters a or/and b increase because the error propaga-

tion increases. The worst performances are obtained for (a = 0.9,b = 0),

(a = 0, b = 0.9) and (a = 0.9,b = 0.9). Note that the left peak corresponds

to (a = 0, b = 0.9), where as the right peak corresponds to (a = 0, b = 0.9).

The height of the two peaks are equal within the experimental error. The

center peak (which should be visualized to be away from the reader) corre-

sponds to (a = 0.9, b = 0.9) and is slightly lower from the other two. Note

that the horizontal plane is tilted at an angle of 20 ° . We summarize the

performances and Gains of three points: (a = 0, b = 0), (a = 0, b = 0.9) and

(a = 0.9, b = 0.9) for all the 3-D plots.

Figure (0, 0) [

Fig. 6.7 11.0 [

Fig. 6.8 7.7

Fig. 6.9 7.7

Fig. 6.10 7.7

Fig. 6.11 3.3

Fig. 6.12 3.3

Fig. 6.13 3.3

Fig. 6.14 0.0

Fig. 6.15 0.0

Fig. 6.16 0.0

(a,b)

(0,0.9)

23.1

19.0

14.9

10.3

4.1

8.7

12.8

4.6

8.7

(0.9,0.9)

19.4

15.7

14.1

9.9

3.7

5.3

9.5

1.6

5.8

4.t

Brief Explaination

System 1: Uncoded system

System 2: Upper bound

System 3: Our Codesigned receiver

Ststem 4: Lower bound

Coding Gain
Overall Gain

Upper Bound on Overall Gain

Technique Gain

Upper Bound on Tech. Gain

Error Propagation loss Unrecovered

by the codesigned receiver.

Performance of System 1 (the uncoded System) serves as the bench with

respect to which the Gains of variuos systems are calculated. Figure 6.11

shows the gain obtained w.r.t. System 1 by System 2 which has a simple

cascade of DFE, Interleaver and Decoder. The receiver in this system makes

no attempt to use the decisions made by the decoder in order to reduce the

error propagation. This system does, however, uncorrelates the error bursts

that occur due to error propagation. Thus, the gain obtained is solely due to

Coding and De-interleaving. Notice that there is very little change in coding

gain ( within 0.8 dBs) with parameters a and b.
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Figure 6.14gives the gain of System 3 w.r.t. System 2. System 3 is our

Co-designed receiver which utilizes the coding in order to reduce the error

propagation. Gain obtained by this system over that of System 2 is solely

due to the reduction in the error propagation. Thus It gives the Technique

Gain. Several observations must be made from this figure. There is a large

variation (about 4.6 dBs) in the Technique Gain. It is highest for the points

(a = 0.0, 0.9) and (a = 0.9, b = 0.0) indicating that the technique works at

its best for channels with short impulse responses. Note that the technique

gain is about 1.6 dBs at point (a = 0.9,0.9) which looks low at the first sight.

Improvement of the Technique gain for such channels (which require more

than one feedback coefficient in the FBF of DFE) is the topic of our future

research. We are quite confident that Significant improvements can be made

for such channels. Figure 6.15 gives an upper bound on the Technique Gain

i.e. ultimate gain possible by a receiver that reduces the error propagation,

in fact, it is the gain provided by a receiver that completely eliminates the

error propagation. Figure 6.16 gives the difference of figures 6.14 and figures

6.15. It indicates the weakeness of our receiver. It points out that the our

receiver was unable to obtain high gains when both parameters a and b where

high.

Figure 6.12 shows the Overall gain obtained by our Codesigned receiver.

Figure 6.13 gives the upper bound for the same.

6.3 Discussion

The above results clearly show that the Codesigned receiver is quite successful

in reducing error propagation in channels with but severe ISI that spans

over a small number of neighboring channels. They also shed light over

the weakenesses of the Codesigned receiver. The Gains abtained here are

expected to increase even more dramaticaly when a and b move closer to

one. The Complexity of the receiver is equal to that of a decoder plus two

conventional DFEs.
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Chapter 7

Future Work

Here we discuss the directions in which the future work will be carried out.

We will primarily concentrate on the 8-PSK with HLL system. The sug-

gested avenues include bounds on the performance, further simulations, and

techniques for further improvement in the performance. Section 7 discusses a

technique which can has the potential of improving the performance for chan-

nels that require DFEs with large number of feed back coefficients. Finally,

section 7.1 discusses possible improvements n the adaptation algorithm. The

number of corrected decisions in the Feed Back Filter of ith slow DFE is

greater than that for jth slow DFE when i > j. Therefore, the ith DFE

suffers less from error propagation as compared to the jth DFE. This in turn

implies that the decisions made by the jth DFE are more reliable than those

made by the ith DFE. Decisions from all slow DFEs are provided to the soft

HLL decoder. Since, they have unequal reliability, we can weigh them with

unequal weights prior to soft decoding so that more reliable decisions are

weighted by higher weights. By doing this we can improve the performance

of the decoding algorithm.

7.1 Improvement for the adaptation Algo-

rithm

We have discussed that the fast and slow equalizers can be made adaptive.

Since, the decisions of the last slow DFEs has the highest reliability. Thus,

the coefficients obtained in this equalizer are also most reliable. However, in
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the current form of the scheme,thesecoefficientsare thrown away,anddonot
contribute in the overall adaptation process.Therefore,the reliability of the
coefficientsis determineddominantly by the fast DFE. We want to investigate

a scheme were the more reliable coefficients of the last slow equalizer are

utilized to improve the quality of the coefficients of the over all system.
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Figure 1.1 Block Diagram for the system with channel

encoding scheme.
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Figure 2.1 Example of helicl interleaving for a code with codewords of length 3.
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Error sequence at the output of the ideal canceller:
x-- Error.

000x0000000000x00000x00000000000x00000

Figure 4.3(a)

Error sequence at the output of the DFE:

000x0xx0000000xxx00x00x00000000xxxxx0
k J k J \

Error Bursts

J k_ j

Figure 4.3(b)
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Performance of Coded System 2: with simple cascaded receiver
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Performance of Coded System 3: Co-designed receiver
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Performance of Coded system with Perfect Feedback: _ Bound on performance
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Gain of System 2 relative to System 1: Coding Gain
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Gain of Coded System with Perfect Feedback relative to System I: Upper Bound on Gain
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Gain of System 3 relative to System 2: Technique Gain
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Gain of System with perfect Feedback relative to System 2: Upper Bound on Technique Gain
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